THERMflow
Thermal Store Cylinders
Technical Manual

Manual must be completed by Installer and left with Home Owner
Contents

Preface ... 2
Handling & Storage ... 3
What is a Thermal Store? ... 3
Design ... 3
Heat Sources ... 4
Mains Water Supply ... 5
Immersion Heaters ... 5
Water Treatment ... 6
Pipework ... 7
Discharge/Overflow Requirements ... 7
Showers .. 8
THERMflow Electric: Schematic & Connection Heights .. 9
THERMflow Multifuel: Combination & Cylinder Schematics 10
THERMflow Multifuel: Connection Heights ... 11
Technical Data ... 12
THERMflow with External PHE: Description ... 13
THERMflow with External PHE: Wiring Diagram ... 13
THERMflow with External PHE: General Schematic .. 14
Pressurised THERMflow ... 15
Pressurised THERMflow Discharge Requirements ... 15
Pressurised THERMflow General Schematic ... 16
Installation Schematic (Electric Combination) .. 17
Installation Schematic (Multifuel Combination) ... 18
Installation Schematic (Multifuel Cylinder) ... 19
Installation Schematic (Pressurised THERMflow) ... 20
Wiring Diagram (Boiler) ... 21
Preface

An early adopter of the principal of domestic thermal stores, McDonald Water Storage first started manufacturing thermal stores in early 1990s. Manufactured by our trained coppersmiths and designed based upon the experiences of our technical team. The McDonald Water Storage THERMflow provides the perfect solution to both mains pressure hot water and, in the case of the Boiler model, space heating requirements, taken from the same cylinder.

The THERMflow Thermal Store Installation & Technical Manual should be read in conjunction with the installation and servicing manuals issued by the manufacturer(s) of the heat source(s) used within the thermal storage system.

This information provided is intended to provide support with the installation of the THERMflow thermal storage system. Responsibility for selection and specification of our equipment remains that of our customer and any experts or consultants concerned with the installation(s). Our full Terms & Conditions of Sale are available on request.

The THERMflow thermal storage system is required to be fitted by a competent installer, in accordance with Building Regulations G, Gas Safety Regulations, and the Water Fitting Regulations (England and Wales), Water Fitting Regulations (Northern Ireland) or Water Byelaws (Scotland).

(Please note that while the THERMflow overcomes Safety implications within Building Regulations G3 relating to pressure and temperature discharge requirements, the installation of the THERMflow may be notifiable to the relevant building control.)
Handling & Storage

It is important the THERMflow is handled with care and stored the correct way up in a dry place at all times prior to, during and after installation.

DO NOT LIFT BY THE PIPEWORK as this can loosen off the pre-tested pipework and may result in leaks. It is good practice to check the joints before filling with water in case anything has been loosened in transit. Any manual lifting will need to comply with the requirements of the Manual Handling Operations Regulations issued by the Health & Safety Executive. For installations on higher levels of properties such as the 4th floor it is recommended as best practice for the THERMflow to be moved vertically within a lift.

What is a Thermal Store?

- Initially the Thermal Store is filled through either the integral, or a remote, Primary Feed & Expansion Tank.
- The primary store of water is then heated by Immersion Heaters, Gas / Oil Boiler, Central Plant as well as other alternative heat sources such as Solid Fuel, Solar etc.
- Mains pressure water is fed and heated via a secondary heat exchanger, which draws its heat from the primary store of water.

Design

The copper THERMflow Thermal Store is a bespoke primary store that is very well insulated to ensure minimum Heat Loss and optimally designed to meet the stringent requirements of ERP.

Cold water at mains pressure passes through a High Efficiency Coil, which is specifically designed to draw heat from the thermal store at mains pressure. This heated water is subsequently blended with cold mains water through a Thermostatically Controlled Mixing Valve, to provide mains pressure water at 55°C to the taps and showers.

The Secondary Pipework Loop (DHW Coil & External Pipework) can contain a total of 3 - 5 Litres of water, and incorporates an expansion bottle to accommodate the thermal expansion of the heated mains water. If the volume of the secondary pipework loop exceeds 15 Litres, then the installer must fit suitable relief valves and appropriately sized expansion vessels.
The main benefits of the Open Vented Thermal Store configuration is that alternative heat sources such as Solid Fuel can be used. There is also no onerous overflow restrictions, as required with Unvented Storage Cylinders.

It allows the Boilers to input all their power into the store and reduces boiler cycling.

Input energy from the boiler(s) is circulated from the thermal store to the central heating system while the High Efficiency Secondary Coil is specifically designed to provide high performance blended mains pressure hot water.

Being a thermal store that is vented, it is inherently safe and requires no annual maintenance. Its benefits go one step further as being a primary store there is no legionella risk, and having a blending valve ensures in-built scald protection.

Heat Sources

The THERMflow Thermal Stores can utilise additional heat sources, including solar, solid fuel (e.g. wood burning stove) and heat pumps.

In absence of recommendations from the solid fuel boiler manufacturer as to the best layout, McDonald Water Storage would advise the following layout would be most suitable to achieve the best performance from a gravity circulation layout. Key points to follow are:-

- Ensure the centre of the heat source connections is at least **900mm** below the centre of the connections on the cylinder
- Ensure the Header tank is at least **500mm** above the radiator circuit
- Gravity pipework to be 28mm diameter or larger
- Avoid long horizontal runs aim for a ratio of 20:80 minimum between horizontal and vertical
Mains Water Supply

The THERMflow’s performance is largely related to the cold water supply pressure and flow rate incoming to the property.

- The mains supply to the unit should ideally be in a minimum of **22mm diameter** but will work with 15mm if there is adequate pressure and flow rate.
- The THERMflow will operate with a minimum incoming mains pressure of **1.0 Bar** and a **minimum flow rate of 20 Litres/minute**. Careful consideration should be made to ensure the pressure of hot and cold supplies are balanced.
- An incoming pressure of **2.1 Bar** is the most optimal for performance.
- If the incoming pressure **exceeds 3 Bar**, then a pressure reducing valve must be fitted after the stopcock of where the incoming cold supply enters the property.
- No Pressure Reducing Valve or Check Valve should be fitted **within 2 metres** of the Cold Inlet to the THERMflow Coil.
- If the flow rate exceeds **18 Litres per minute** at any tap, it should be restricted to maintain the performance of the system as a whole.

Immersion Heaters

- Immersion Heaters should be set to ensure the reading on the Thermometer reaches **75°C** (maximum **80°C**) once the unit is heated.
- We would recommend setting the Immersion Heaters at **70°C** and the high limit at **90°C**. This can be lowered or increased as required for the installation requirements.
- If in any doubt of how to set the Immersion or what temperature we would advise for specific installations, please contact us on **01592 611123**.
- All Immersion Heaters should be wired by a qualified electrician as shown below;
Water Treatment

In accordance with the Building Regulations L1A: New Dwellings/ L1B: Existing Dwellings, the requirements set out in the Domestic Building Services Compliance Guide specify that “where the mains water hardness exceeds 200ppm provision should be made to treat the feed water to water heaters and the hot water circuit of combination boilers to reduce the rate of accumulation of lime scale”. In most instances of this water condition, an inline Water Conditioner/Scale Inhibitor would be fitted to the incoming mains.

The water quality shall be in accordance with European Council Directive 98/83/EC, or revised version at the date of installation, and is not fed with water from a private supply. Particular:

- Chloride content: Max. 200 mg/l
- Sulphate content: Max. 200 mg/l
- Combination chloride/sulphate: Max. 300 mg/l (in total)

The THERMflow is part of the primary system the Boiler (Multifuel) models and other parts of the primary circuit will require the application of a protective scale and corrosion inhibitor such as Fernox to ensure adequate protection. This should avoid having corrosive material in the primary system and remove any build-up of sludge which can reduce the performance of the High Efficiency Heat Exchanger Coil.

The volumes and concentration of inhibitor required should be calculated in accordance with the manufacturer’s instructions. Please ensure that the thermal store volume is also included as well as the radiator and pipework volume.

While we strongly recommend it, inhibitor is optional for the Electric models. However if there are doubts regarding the quality of water being used to fill the THERMflow, an inhibitor should be added to the appliance when filling in line with the manufacturer’s instructions for these products.

Please note that in all THERMflow models, the primary water within the thermal store water is used as primary storage and the domestic hot water is heated instantaneously by means of the High Efficiency Heat Exchanger Coil or an External Plate Heat Exchanger. Therefore, treating the primary water will not have an effect on the domestic hot water supply.
Pipework

It is imperative to achieve balanced supply of hot and cold water in a mains pressure system, and that the piping in a dwelling should be sized in accordance with BS 6700.

However, the following rule of thumb guidelines should be adequate for most of the smaller property types as long as water pressures are within the recommended range.

- The cold feed from the main incoming stop tap to the THERMflow should be run in 22mm pipe. The cold main and hot draw-off should also be run in 22mm as far as the branch to the bath tap.
- A 15mm copper or equivalent external service may be sufficient for a small 1 bathroom dwelling (depending upon the flow rate available), but the minimum recommended size for new dwellings is 22mm (25mm MDPE).
- The internal branches to the hand basins and sinks should be in 10mm and to the baths and showers in 15mm. (1 metre minimum)
- A pressure reducing valve must be fitted after the stopcock of where the incoming cold supply enters the property and at least 2 metres away from the inlet to the Secondary Water Coil.

Discharge/Overflow Requirements

The THERMflow is a Vented Thermal Store and therefore does not require safety discharge from a Pressure and Temperature Relief Valve as highlighted in Part G of the Building Regulations.

The Manual Fill version of the THERMflow Thermal Store can be sited anywhere within the property as no discharge pipework is required, however we do supply an Overflow pipe to the Feed & Expansion tank. (On the Multifuel model, if an open vented central heating is to be run, ensure a minimum 500mm from the highest point of the radiator circuit and the bottom of the Feed & Expansion Tank.) Once the unit is filled through the pipework, close off the isolation valve and disconnect the flexible hose from the pipework and cap the pipe to avoid any dead legs.

If an Automatic Fill version is to be installed then the overflow must be run to a suitable drain point. A site glass can be supplied if the overflow termination is difficult to see. The site glass must be fitted vertically, with continuous fall of the overflow pipe.

The overflow should be run in either 22mm copper tube or high temperature overflow pipe with suitable supports. Ensure that the overflow is capable of coping with a ball-valve fail situation and restrict flow to the ball-valve accordingly.
Showers

- THERMflow cylinders are compatible with all showers.
- Most commonly used are of the Thermostatic Mixing type. All mains pressure systems are subject to dynamic changes particularly when other hot and cold taps/showers are opened and closed. This will cause changes in the inlet hot water temperature and pressure at mixed water outlets such as showers.
- Careful consideration should be taken in selecting specification of the shower valve to ensure the correct mixed water temperature and pressure is maintained and that it is suitable for the type of people using it.
- Some showers in the TMV2 range have about a 10 degree differential between the hot inlet temperature and the mixed outlet temperature, allowing showering temperatures of up to 48 degrees.
- Other valves such as TMV3 only allow maximum temperatures of 41 degrees.
- Commissioning should ensure that the hot draw off from the thermal store is set taking this into account.
- Please ensure that the shower head is capable of taking mains pressure.
- Please ensure that the shower tray drain is capable of handling the shower head flow rate. A flow restrictor may be required in the shower outlet hose.
- The hot water supply to a shower-mixing valve should be fed wherever practical directly from the THERMflow or be the first draw-off point on the hot circuit.
- The cold supply to a shower-mixing valve should wherever practical be fed directly from the incoming mains. To ensure balanced pressure for the shower mixing valve, a pressure reducing valve must be fitted after the stopcock of where the incoming cold supply enters the property.
- The shower must incorporate or be fitted with the necessary check valves to provide back-syphonage protection in accordance with the Water Regulations.
THERMflow Electric: Schematic & Connection Heights

<table>
<thead>
<tr>
<th>Capacity (Litres)</th>
<th>120</th>
<th>140</th>
<th>180</th>
<th>210</th>
<th>250</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1130</td>
<td>1250</td>
<td>1500</td>
<td>1700</td>
<td>1700</td>
<td>2050</td>
<td>1950</td>
</tr>
<tr>
<td>Diameter</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>640</td>
<td>640</td>
<td>740</td>
</tr>
<tr>
<td>Drain</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Off Peak IH</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>On Peak IH</td>
<td>450</td>
<td>450</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Thermometer</td>
<td>400</td>
<td>400</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Hot Out (Coil)</td>
<td>730</td>
<td>850</td>
<td>1100</td>
<td>1300</td>
<td>1300</td>
<td>1650</td>
<td>1550</td>
</tr>
<tr>
<td>Cold In (Coil)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Allow an additional 100mm to the diameter for external pipework connections.
Combination

- **Boiler Flow**
- **Solid Fuel Flow**
- **High Limit Stat @ 90°C**
- **Expansion Chamber**
- **Cold Mains Secondary Water c/w Y Strainer**
- **Central Heating Flow & Return**
- **Boiler Return**
- **Solid Fuel Return**
- **Drain**
- **Immersion Heater**

Cylinder

- **Hot Out c/w Thermostatic Mixing Valve**
- **½" Boss for P & T c/w Plug**
- **Expansion Chamber**
- **Cold Mains Secondary Water c/w Y Strainer**
- **Central Heating Flow & Return**
- **3kW**
- **Immersion Heater**
- **Thermometer @ 75°C**

- **Overflow (Not fitted as standard)**
- **Boiler Flow**
- **Solid Fuel Flow**
- **High Limit Stat @ 90°C**
- **Expansion Chamber**
- **Cold Mains Secondary Water c/w Y Strainer**
- **Central Heating Flow & Return**
- **Boiler Return**
- **Solid Fuel Return**
- **Drain**
- **Immersion Heater**
- **Thermometer @ 75°C**

- **Ball-valve**
- **Flexi-Hose & Isolator**
- **Hot Out c/w Thermostatic Mixing Valve**
- **½" Boss for P & T c/w Plug**

Note: The images depict schematics for a THERM flow Multifuel: Combination & Cylinder.
THERMflow Multifuel: Connection Heights

The connection heights shown below are taken from the ground (in mm). These heights and the diagrams shown above are indicative of a typical arrangement of connections, including optional extras. Bespoke options for specific installation are available and will be supplied with a sketch prior to manufacturing of the THERMflow.

<table>
<thead>
<tr>
<th>Component</th>
<th>120</th>
<th>140</th>
<th>180</th>
<th>210</th>
<th>250</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>1130</td>
<td>1250</td>
<td>1500</td>
<td>1700</td>
<td>1700</td>
<td>2050</td>
<td>1950</td>
</tr>
<tr>
<td>Diameter</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>640</td>
<td>640</td>
<td>740</td>
</tr>
<tr>
<td>Cylinder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>960</td>
<td>1120</td>
<td>1360</td>
<td>1560</td>
<td>1870</td>
<td>1870</td>
<td>1670</td>
</tr>
<tr>
<td>Diameter</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>590</td>
<td>640</td>
<td>740</td>
</tr>
<tr>
<td>Cold Feed / Drain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Immersion Heater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Central Heating Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Central Heating Return</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>400</td>
<td>450</td>
<td>550</td>
<td>650</td>
<td>650</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Boiler Flow</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Boiler Return</td>
<td>730</td>
<td>850</td>
<td>1100</td>
<td>1300</td>
<td>1300</td>
<td>1650</td>
<td>1550</td>
</tr>
<tr>
<td>Solid Fuel Flow</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Solid Fuel Return</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>630</td>
<td>750</td>
<td>1000</td>
<td>1150</td>
<td>1150</td>
<td>1450</td>
<td>1350</td>
</tr>
<tr>
<td>Thermometer</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Control Stat</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>350</td>
<td>350</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>High-Limit Stat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Out (Coil)</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>950</td>
<td>950</td>
<td>1300</td>
<td>1150</td>
</tr>
<tr>
<td>Cold In (Coil)</td>
<td>730</td>
<td>850</td>
<td>1100</td>
<td>1300</td>
<td>1300</td>
<td>1650</td>
<td>1510</td>
</tr>
<tr>
<td>Cold Out (Coil)</td>
<td>250</td>
<td>350</td>
<td>520</td>
<td>720</td>
<td>720</td>
<td>1070</td>
<td>970</td>
</tr>
<tr>
<td>½” Boss for P & T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. THERMflow Cylinder models only
2. THERMflow models including Solid Fuel

Allow an additional 100mm to the diameter for external pipework connections.
Technical Data

ERP / Heat Loss Data

<table>
<thead>
<tr>
<th>Capacity (Litres)</th>
<th>120</th>
<th>140</th>
<th>180</th>
<th>210</th>
<th>250</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation Thickness (mm)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>ERP Class</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Standing Heat Loss (Watts)</td>
<td>68</td>
<td>72</td>
<td>80</td>
<td>85</td>
<td>69</td>
<td>76</td>
<td>89</td>
</tr>
<tr>
<td>Standing Heat Loss (kWh/day)</td>
<td>1.63</td>
<td>1.73</td>
<td>1.92</td>
<td>2.04</td>
<td>1.66</td>
<td>1.82</td>
<td>2.14</td>
</tr>
<tr>
<td>Draw Off Profile*</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Annual Energy Consumption (kWh)*</td>
<td>1444</td>
<td>1922</td>
<td>2456</td>
<td>2813</td>
<td>3172</td>
<td>3374</td>
<td>4596</td>
</tr>
<tr>
<td>Annual Energy Consumption (GJ)*</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>dB Rating*</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

*Electric Thermal Stores only

Thermal Stores have been tested in accordance with **EN 50440** (Electric) or **HWA Thermal Store Specification** (Multifuel). Heat losses should not be directly compared with heat losses from unvented/vented cylinders because the unvented/vented cylinders are tested at 65°C and the thermal store at 75°C so they are treated differently in SAP.

Draw Off Profile (L)

<table>
<thead>
<tr>
<th>Capacity</th>
<th>@50°C</th>
<th>@45°C</th>
<th>@40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>90</td>
<td>114</td>
<td>132</td>
</tr>
<tr>
<td>140</td>
<td>105</td>
<td>133</td>
<td>154</td>
</tr>
<tr>
<td>180</td>
<td>135</td>
<td>171</td>
<td>198</td>
</tr>
<tr>
<td>210</td>
<td>158</td>
<td>200</td>
<td>231</td>
</tr>
<tr>
<td>250</td>
<td>188</td>
<td>238</td>
<td>275</td>
</tr>
<tr>
<td>300</td>
<td>225</td>
<td>285</td>
<td>330</td>
</tr>
<tr>
<td>400</td>
<td>301</td>
<td>381</td>
<td>440</td>
</tr>
</tbody>
</table>

- Store Temperature - 75°C
- Incoming Mains - 10°C
- Ambient Temperature - 20°C
- Tap Flow Rate - 12L/min

Selection Chart

<table>
<thead>
<tr>
<th>Sizing Guide</th>
<th>120</th>
<th>140</th>
<th>180</th>
<th>210</th>
<th>250</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Model - Bedrooms</td>
<td>1 - 2</td>
<td>2</td>
<td>2 - 3</td>
<td>3 - 4</td>
<td>4 - 5</td>
<td>4 - 6</td>
<td>5 - 6</td>
</tr>
<tr>
<td>Boiler Model – Baths & Showers</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Heating Load Max (kW)</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>Electric Model – Bedrooms</td>
<td>1</td>
<td>1 - 2</td>
<td>1 - 3</td>
<td>2 - 3</td>
<td>2 - 4</td>
<td>3 - 4</td>
<td>3 - 4</td>
</tr>
<tr>
<td>Electric Model – Baths & Showers</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
THERMflow with External PHE: Description

An External Plate Heat Exchanger (PHE) can be fitted to a THERMflow in replacement of the internal High Efficiency Coil. This is an ideal solution in areas with hard water or limescale, and is easier to clean or replace the PHE as required.

The cold mains passes through the Secondary side of the PHE, whilst the primary water in the thermal store is pumped across the Primary side. A flow switch on the Secondary pipework, when activated by a hot outlet being opened, will activate the Charging Pump to circulate the store’s water round the PHE, allowing for instantaneously heated water. Both the Pump and Switch are linked through a Wiring Centre, installed on the side of the tank.

THERMflow with External PHE: Wiring Diagram
THERMflow with External PHE: General Schematic

- **Boiler Flow**
- **Solid Fuel Flow**
- **Overflow** (Not fitted as standard)
- **Hot Out** c/w Thermostatic Mixing Valve
- **External Plate Heat Exchanger**
- **Cold Mains Secondary Water c/w Flow Switch**
- **Wiring Centre**
- **Charging Pump**
- **Central Heating Flow & Return Connections**
- **Drain**
- **3kW** Immersion Heater
- **High-Limit Stat @ 90°C**
- **Boiler Control Stat @ 75°C**
- **Ball-valve**
- **½” Boss for P & T c/w Plug**
- **Thermometer**
- **Solid Fuel Return**
- **Boiler Return**
Pressurised THERMflow

The Pressurised THERMflow is an Unvented variation of the Thermal Store, where the main heat source is a Pressurised (Sealed System) Boiler and the cylinder is integrated into the Central Heating system.

The system requires a “Filling Loop” with gauge, connected to the Mains to fill and pressurise the Thermal Store, Primary System and Boiler to **2.5 Bar** Maximum. Once refilled, the Filling Loop is closed off from Incoming Mains.

- Primary Storage connected within the Central Heating system
- Hot Water via Secondary Flow connected to Cold Mains to extract heat from Thermal Store
- Pressure Reducing Valve required for Cold Supply if Pressure above **3.0 Bar**
- Maximum Working Pressure of Thermal Store **2.5 Bar**
- Pressure Relief Valve should be set at **3.0 Bar**
- Pressure & Temperature Relief Valve should be set at **4.5 Bar**
- Suitably sized Expansion Vessel required within Central Heating system (located after the Filling Loop) taking the Thermal Store volume into account

Pressurised THERMflow Discharge Requirements

Unlike the other Thermal Store units, the Pressurised Thermal Store is an Unvented tank and does require a safety discharge from their Relief Valves (Pressure and Temperature, and Expansion).

The discharge pipe must be fed to a Visible Tundish (maximum **500mm** distance between Valves and Tundish), then fed through minimum **300mm** of straight pipe before any elbows/bends, to be fed outside to the following options:

1. Into a fixed grating above a water gully
2. Straight down, up to 100mm above ground level
3. Into an outside Metal Hopper
4. Onto the outside wall (**IF NO OTHER OPTIONS AVAILABLE**)
Pressurised THERMflow General Schematic
THERMflow Combination Type Schematic (Electric)

Notes
- * Indicates optional extras, which are available but not supplied as standard
- Overflow recommended in copper due to high temperatures
- Temperatures indicated are indicative based upon regulations
- Overflow pipework should be able to handle over 100°C temperatures

*Pressure Reducing Valve NOT REQUIRED at pressures below 3 Bar, Minimum of 2 metres from unit.

Colour Diagrams available on the website: https://www.mcdonaldwaterstorage.com/downloads
Installation Schematic (Multifuel Combination)
THERMflow Cylinder Type Schematic (Multifuel)

- *Copper F & E Tank
- *Overflow
- Open Vent
- Solar Flow
- Solar Return
- Solar Controller & Pumping Station
- PV
- Boiler Control Stat @ 75°C
- DHW Coil & Pipework
- High-Limit Stat @ 90°C
- Mains Pressure Hot Water
- Mains Pressure Hot Water
- Thermostatic Mixing Valve
- 36°C

- Color Diagrams available on the website: https://www.mcdonaldwaterstorage.com/downloads

Notes:
- * Indicates optional extras, which are available but not supplied as standard
- ! Indicates extras that are only fitted with Solid Fuel thermal stores
- 500mm height required from top of highest radiator point to bottom of F&E for sufficient head to the system
- Based on open vented gravity central heating, solid fuel and boiler systems
- Overflow recommended in copper due to high temperatures
- Temperatures indicated are indicative based upon regulations
- Overflow pipework should be able to handle over 100°C temperatures

Central Heating supplied from THERMflow

Optional
Wiring Diagram (Boiler)

Notes:
- Terminals 4 and 5 SHOULD BE linked, if a room stat is required and this link should be removed and replaced with the room stat link.
- To be used in conjunction with the attached wiring instructions.
- Some boilers require a permanent live. Refer to boiler instructions for details.

Colour Diagrams available on the website: https://www.mcdonaldwaterstorage.com/downloads

Pre-wired if supplied as Double Pump Package
Wiring Diagram (Solid Fuel)

Key
- **Live**: Switch Live - Solid Fuel
- **Neutral**: Switch 1 - Solid Fuel
- **Earth**: Solid Fuel

Notes
- * - Terminals 4 and 5 SHOULD BE linked, if a room stat is required this link should be removed and replaced with the room stat link.
- To be used in conjunction with the attached wiring instructions.
- Some boilers may require a permanent Live. Refer to boiler instructions for details.

Colour Diagrams available on the website
https://www.mcdonaldwaterstorage.com/downloads
Commissioning

The below is a recommended guide of actions and checks that should be undertaken during commissioning:

DO

✓ During commissioning, complete all relevant sections of the Commissioning Checklist (Page 22-24). This must be completed during commissioning and left with product to meet the Warranty conditions.

✓ Check the incoming mains water pressure. If the incoming mains pressure is higher than **3.0 Bar**, fit a Pressure Reducing Valve set at 3.0 Bar maximum – recommended **2.1 Bar** where the cold supply enters the property as this will create balanced pressure throughout.

✓ Ensure that connections are fitted in accordance with the sketch supplied

✓ Ensure the drain is connected to allow draining of the unit if required. If a drain-cock is fitted, we recommend a DZR fitting.

✓ Fit the Overflow with Copper piping or high temperature plastic to the thermal store system where required.

✓ Ensure minimum of 225mm between the top of the tank and ceiling to allow access to service the ball-valve if ever required.

✓ Check that all pipework connections on the THERMflow are tight with pipes fully inserted following transit and handling.

✓ Fill the THERMflow via the ball-valve in the Feed & Expansion Tank.

✓ Ensure the system is inhibited correctly – see page 6.

✓ Check the water level in the Feed & Expansion Tank, and adjust ball-valve so water is at lowest level.

✓ On the Automatic Fill version, turn down servicing valve once system is initially filled to where the warning/overflow pipe will cope with the discharge from a ball-valve failure.

✓ On the Manual Fill version, once the unit is filled through the pipework, close off the isolation valve, disconnect the flexible hose from the pipework and cap the pipe to avoid any dead legs.

✓ Check for leaks throughout the thermal storage system.

✓ Run all taps and other hot outlets to remove all air from the system.

✓ Immersion Heaters should be set at **70°C** – see page 5.
Boilers – Set the boiler pump to its highest setting. Set the Boiler Thermostat and also the THERMflow thermostat to maximum. Fire the boiler on HOT WATER ONLY setting and wait until the boiler goes off. Turn the cylinder thermostat down slowly till it clicks off, then turn it down by approximately 2°C. This should mean that the THERMflow thermostat controls the system. This can be checked by running off some of the hot water, re-firing the boiler and checking that the THERMflow thermostat is in control.

Ensure the store temperature is set to 75°C (70°C minimum and 80°C maximum) on the store temperature gauge. This can be increased but consideration should be made for the temperature and pressure rise, caused by “creeping”, where small draw offs are present.

Temperature Controls must be fitted to ensure safe temperature of Thermal Store

Ensure sufficient clearance for External Plate Heat Exchanger & Pipework, if applicable.

On installs where central heating is run from the Multifuel THERMflow, ensure that 500mm height difference is in place between the highest point of the radiator circuit and the bottom of the Feed & Expansion Tank.

Ensure that all exposed pipework on the THERMflow is insulated to minimalise any heat losses.

Ensure the Thermostatic Mixing Valve is adjusted to control the hot water outlet temperature between 50 - 55°C (take shower differential into consideration).

Check the boiler pump setting is set as high as possible without emitting excessive noise to prevent a boiler temperature differential of greater than 11°C.

If required, chlorinate the hot and cold water system in accordance with BS 6700 and Water Regulations. Please note that the whole of the domestic hot and cold water systems must be adequately flushed after chlorination. Failure to do so will cause damage to the exchangers/immersion heaters etc.

DON’T

- Use a combined feed and vent.
- Use tube smaller than 28mm between boiler and THERMflow if the boiler exceeds an output of 60,000 Btu (17kW).
- Place any clothing or other combustible materials against or on the THERMflow.
Troubleshooting

Below contains a troubleshooting and solution guide to the thermal store system. If this table does not resolve your problem, please contact either your installer or phone McDonald Water Storage Technical Team for further advice.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The water at the tap is lukewarm or cold</td>
<td>The thermal store is designed to work best when the store temperature is at or approaching 75°C - 80°C. While the thermal store can provide hot water at lower temperature storage, the available flow rates and volume will be reduced. Check the thermometer is showing the store temperature is at or approaching 75°C - 80°C. If this is not the case; 1) On the Multifuel model, ensure that the boiler is firing, that the control thermostat is set at 75°C and allow sufficient time for the store to reach working temperature. 2) On the Electric model, a qualified electrician should check that the immersion heater is working, the control thermostat is set at 75, the safety cut-out has not tripped, and receiving the correct supply at the correct time (off-peak).</td>
</tr>
<tr>
<td>The thermal store is at 75°C and the water at the taps is still lukewarm or cold</td>
<td>1) If the store is at or approaching 75°C - 80°C, check that the Thermostatic Mixing Valve is correctly set. The maximum temperature of water from the Mixing Valve should be about 55°C. 2) If the valve is correctly set, check that the flow rate at any outlet (e.g. bath tap) does not exceed 18 Litres per minute. If the flow rate is too high then sufficient heat transfer inside the THERMflow may not be occurring. Turn the flow through the tap down or fit a suitable flow restrictor and the temperature will increase. 3) If Stage 1 and 2 has not resolved the problem a competent installer should check the mixing valve for blockages within the internal filter of the mixing valve.</td>
</tr>
<tr>
<td>Not enough hot water and less than 75°C on the thermometer.</td>
<td>Check the heat sources and their input in (kW) to the store as this will be lower than the kW output which will result in the store not producing enough heat for the exchanger to provide heated mains pressure water.</td>
</tr>
</tbody>
</table>
There is a brownish tint to the mains pressure hot water.

This could be a symptom with the heat exchanger coil leaking inside the thermal store. An installer should have this tested. If this is the case, pay attention to the Feed & Expansion Tank as the pressure within the store will increase causing the tank to overflow continually.

THERMflow is set at 75°C but the mains pressure temperature drops quickly when running a tap (e.g. bath)

1) If an inhibitor has been installed, check with the installer that it has been installed at the correct proportion and checked at appropriate frequencies.

2) The in-line strainer in the cold mains supply to the unit may be choked and require cleaning.

3) Carefully check the hot water temperature flow into the mixing valve. If it is very hot, it may be that the valve needs to be checked / replaced. A competent installer should check the mixing valve for blockages within the internal filter.

4) If the DHW Coil is giving an initial heat transfer and then fading, this could be a sign of scale build up inside the Heat Exchanger Coil, especially if in a known hard water area. A competent installer would need to descale the DHW coil and check/fit descaling equipment.

Warranty

McDonald Water Storage guarantee the THERMflow shell against material defect or manufacturing fault for a period of 5 years from the date of delivery. Components are guaranteed for 2 years.

The above product guarantee is valid provided:

- It has been installed by a competent installer in accordance with the instructions detailed in our installation manual and all relevant Codes of Practice and Regulations in force at the time of installation.
- No factory fitted parts have been removed for unauthorised repair or replacement and the product has not been modified – other than by McDonald Water Storage.
- Any replacement parts should be purchased from McDonald Water Storage.
- The hot water store has only been used for the storage of potable water supplied from the public mains (Max – 200mg/litre chloride). And treated as detailed in the installation instructions.
• The water quality shall be in accordance with European Council Directive 98/93 EC, or revised version at the date of installation, and is not fed with water from a private supply. Particular:
 - Chloride content: Max. 200mg/l
 - Sulphate content: Max. 200mg/l
 - Combination chloride/sulphate: Max. 300mg/l (in total)
• It has not been subject to wrong or improper use, left uncared for, or subjected to scale or frost damage.
• In accordance with the Building Regulations L1A: New Dwellings/ L1B: Existing Dwellings, the requirements set out in the Domestic Building Services Compliance Guide specify that “where the mains water hardness exceeds 200ppm provision should be made to treat the feed water to water heaters and the hot water circuit of combination boilers to reduce the rate of accumulation of lime scale”.
• Where appropriate the unit has been serviced annually by a competent, licenced engineer in accordance with the requirement set out in the installation manual.
• The Commission Checklist Service Record included in our manual has been completed and updated after each annual service where required.
• Any disinfection has been carried out strictly in accordance with BS 6700.
• For heavy use installation where constant usage / reheat is required titanium immersion heaters should be fitted.
• Please note, defects caused by corrosion or scale deposits are not covered by any guarantee.
• Without prejudice to any other term, we shall not be liable for any water damage caused directly or indirectly as a result of any leak or other defect in the goods. We cannot control the conditions of use of the goods or the time or manner or location in which they will be installed and the purchaser agrees to be fully responsible for testing and checking all works which include the goods at all relevant times (up to, including and after commissioning) and for taking all necessary steps to identify any leaks and prevent any damage being caused thereby.

Please see our full Terms & Conditions on our website: https://www.mcdonaldwaterstorage.com
Ancillary Descriptions

The following spare parts are available to purchase from the Website, with additional information provided.

Follow the link; https://www.mcdonaldwaterstorage.com/store/spares or phone the office on **(01592) 611123**.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Detailed Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Watts Density Immersion Heater (WIHLWD)</td>
<td>3kW Electric Heating Element for Hot Water Cylinder</td>
</tr>
<tr>
<td>Cylinder Thermostat (WTCT)</td>
<td>THERMflow Thermostat (0 - 90°C)</td>
</tr>
<tr>
<td>Thermostatic Mixing Valve (WTTMV)</td>
<td>Adjustable Valve top blend hot and cold water feeds.</td>
</tr>
<tr>
<td>Thermometer (WTERM)</td>
<td>2" Dial Thermometer with back entry probe</td>
</tr>
<tr>
<td>Thermal Store Pump (WTP)</td>
<td>Primary Heating System Circulation Pump</td>
</tr>
<tr>
<td>THERMflow Programmer (WTPROG)</td>
<td>Programmer for Heating and Hot Water cycles, with Service Internal Timer</td>
</tr>
<tr>
<td>Pressure Reducing Valve (WUVPR)</td>
<td>Designed to regulate the incoming mains pressure to a fixed 2.1 Bar pressure</td>
</tr>
<tr>
<td>Plate Heat Exchanger (WTPHE)</td>
<td>Externally exchanges heat with flow + return to the store, and flow + return to the boiler</td>
</tr>
<tr>
<td>Expansion Vessels (WU2EV)</td>
<td>Optional expansion vessel to absorb excess pressure in secondary pipework</td>
</tr>
<tr>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Pressure & Temperature Relief Valve</td>
<td>Valve to relieve excess pressure and temperature from tank (Solid Fuel Thermal Stores)</td>
</tr>
<tr>
<td>Expansion Relief Valve</td>
<td>Valve to relieve water expansion within tank (Pressurised Thermal Stores)</td>
</tr>
<tr>
<td>Ballvalve</td>
<td>Valve to control water flow to Header tank (Float required)</td>
</tr>
<tr>
<td>Plastic Float</td>
<td>Plastic Floats for Ballvalves</td>
</tr>
<tr>
<td>Copper Float</td>
<td>Copper Floats for Ballvalves (Solid Fuel Thermal Stores)</td>
</tr>
</tbody>
</table>
Commissioning Checklist

THERMAL STORE MAINS PRESSURE HOT WATER STORAGE SYSTEM

COMMISIONING CHECKLIST

This Commissioning Checklist is to be completed in full by the competent person who commissioned the storage system as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission this equipment to the manufacturer’s instructions may invalidate the warranty but does not affect statutory rights.

<table>
<thead>
<tr>
<th>Customer Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone Number:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>THERMflow Make & Model:</td>
</tr>
<tr>
<td>Production Number:</td>
</tr>
<tr>
<td>Commissioned by (PRINT NAME):</td>
</tr>
<tr>
<td>Company Name:</td>
</tr>
<tr>
<td>Telephone Number:</td>
</tr>
<tr>
<td>Company Address:</td>
</tr>
<tr>
<td>Commissioning Date:</td>
</tr>
<tr>
<td>ALL SYSTEMS</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>What is the incoming static cold water pressure at the inlet to the system?</td>
</tr>
<tr>
<td>If above 3.0 Bar, has a pressure reducing valve been fitted?</td>
</tr>
<tr>
<td>Has cold mains strainer been cleaned of installation debris?</td>
</tr>
<tr>
<td>Is the installation in a hard water area (above 200ppm)?</td>
</tr>
<tr>
<td>If yes, has a water scale conditioner/inhibitor been fitted?</td>
</tr>
<tr>
<td>What type of scale conditioner/inhibitor has been fitted?</td>
</tr>
<tr>
<td>Has flow rate been restricted to a maximum of 18 litres at any one outlet?</td>
</tr>
<tr>
<td>Time and temperature controls have been fitted in compliance with Part L of the Building Regulations?</td>
</tr>
<tr>
<td>Type of control system (if applicable)</td>
</tr>
<tr>
<td>What is the hot water thermostat set temperature?</td>
</tr>
<tr>
<td>If fitted, what is the Immersion Heater thermostat temperature?</td>
</tr>
<tr>
<td>What is the hot water temperature at the nearest outlet?</td>
</tr>
<tr>
<td>What store temperature is the unit sitting at? (Max 80°C)</td>
</tr>
<tr>
<td>What is the maximum hot water temperature at taps?</td>
</tr>
<tr>
<td>Is the cylinder solar (or other renewables) compatible?</td>
</tr>
<tr>
<td>If a manual fill, has any ball-valve been disconnected or blanked?</td>
</tr>
<tr>
<td>Has the automatic fill flow rate been reduced to ensure the overflow can cope?</td>
</tr>
<tr>
<td>All appropriate pipes have been insulated up to 1 metre or the point where they become concealed?</td>
</tr>
</tbody>
</table>
ALL SYSTEMS PRIMARY SETTINGS (Indirect Heating Only)

<table>
<thead>
<tr>
<th>Question</th>
<th>Sealed</th>
<th>Open</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the primary circuit a sealed or open vented system?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the maximum primary flow temperature?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRESSURISED (UNVENTED) SHELLS ONLY

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has a combined temperature and pressure relief valve and expansion valve been fitted and discharge tested?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>The tundish and discharge pipework have been connected and terminated to Part G of the Building Regulations?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Are all energy sources fitted with a cut out device?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Has a primary expansion vessel been fitted?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If yes, expansion vessel capacity?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL INSTALLATIONS

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The hot water system complies with the appropriate Building Regulations.</td>
<td></td>
</tr>
<tr>
<td>The system has been installed and commissioned in accordance with the manufacturer’s instructions.</td>
<td>Yes</td>
</tr>
<tr>
<td>The system controls have been demonstrated and understood by the customer.</td>
<td>Yes</td>
</tr>
<tr>
<td>The manufacturer’s literature, including this Checklist, has been explained and left with customer.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Commissioning Engineer’s Signature:

Customer’s Signature:

(To confirm satisfactory demonstration and receipt of manufacturer’s literature)
The HWA Charter Statement requires that all members adhere to the following:

- To supply fit for purpose products clearly and honestly described
- To supply products that meet or exceed appropriate standards and building and water regulations
- To provide pre and post technical support
- To provide clear and concise warranty details to customers